MCQ – SHEAR STRESSES IN BEAMS-1

https://www.mesubjects.net/wp-admin/post.php?post=10594&action=edit    MCQ rotating discs

https://www.mesubjects.net/wp-admin/post.php?post=10592&action=edit     MCQ Initially curved https://www.mesubjects.net/wp-admin/post.php?post=8001&action=edit        MCQ Shear stresses beams

https://www.mesubjects.net/wp-admin/post.php?post=7658&action=edit      MCQ Simple stresses

MCQ SHEAR STRESSES IN BEAMS-1

MCQ increases clarity and deep understanding of shear stresses in beams. Shear stresses is one important parameter in design of beams.

  1. Shear stress variation in a beam is
    • (a) Linear
    • (b) Exponential
    • (c) Logarithmic
    • (d) None

ANS: (d)

  1. Shear stress variation in a beam is
    • (a) Linear
    • (b) Exponential
    • (c) Parabolic
    • (d) None

ANS: (c)

  1. Average shear stress in a beam is (Shear force is ‘V’)
    • (a) V/Z
    • (b) V/A
    • (c) V/M
    • (d) None

ANS: (b)

  1. In symmetrical beam sections, the maximum shear stress is in the
    • (a) Top extreme fiber
    • (b) Centroid axis fiber
    • (c) Bottom most fiber
    • (d) None

ANS: (b)

  1. The shear stress in a beam is
    • (a) Only longitudinal
    • (b) Only vertical
    • (c) Longitudinal as well as vertical
    • (d) None

ANS: ©

  1. In the shear stress in beam formula

τ   = VA’ Y-‘/I b,   A’ is the area

  • (a) Of the entire beam
  • (b) Above the centroid axis
  • (c) Below the centroid axis
  • (d) None

ANS: (d)

  1. In the shear stress in beam formula

τ   = VA’ Y-‘/I b,  A’ is the area

  • (a) Of the entire beam
  • (b) Above the centroid axis
  • (c) Above the fiber at distance y
  • (d) None

ANS: (c)

  1. In the shear stress in beam formula

τ   = VA’ Y-‘/I b, Y-‘ is the distance of centroid

  • (a) Of the entire area of the beam
  • (b) Of the area above the centroid axis
  • (c) Of the area below the centroid axis
  • (d) None

ANS: (d)

  1. In the shear stress in beam formula

τ   = VA’ Y-‘/I b, Y-‘ is the distance of centroid

  • (a) Of the entire area of the beam
  • (b) Of the area above the centroid axis
  • (c) Of the area above the fiber at distance ‘y’
  • (d) None

ANS: (c)

  1. The ratio of maximum shear stress to average shear stress in a beam of rectangular section is
    • (a) 1
    • (b) 2
    • (c) 3
    • (d) None

ANS$:(d)

  1. The ratio of maximum shear stress to average shear stress in a beam of rectangular section is
    • (a) 1. 5
    • (b) 2. 5
    • (c) 3.5
    • (d) None

ANS:(a)

  1. The ratio of maximum shear stress to average shear stress in a beam of circular section is
    • (a) 1/3
    • (b) 2/3
    • (c) 3/3
    • (d) None

ANS:(d)

  1. The ratio of maximum shear stress to average shear stress in a beam of circular section is
    • (a) 4/3
    • (b) 5/3
    • (c) 6/3
    • (d) None

ANS:(a)

  1. The ratio of maximum shear stress to average shear stress in a beam of triangular section is
    • (a) 1.5
    • (b) 2.5
    • (c) 3.5
    • (d) None

ANS:(a)

  1. The ratio of maximum shear stress to average shear stress in a beam of triangular section is
    • (a) 1
    • (b) 2
    • (c) 3
    • (d) None

ANS:(d)

  1. The ratio of shear stress in the lowermost fiber of a flange and the shear stress in the uppermost fiber of a web is
    • (a) >1
    • (b) < 1
    • (c) =1
    • (d) None

ANS:(b)

  1. Greater portion of shear force in a beam of I-section is shared by
    • (a) Lower flange
    • (b) Upper flange
    • (c) Web
    • (d) None

ANS:(c)

  1. Greater portion of bending moment in a beam of I-section is shared by
    • (a) Flanges
    • (b) Web
    • (c) Equally by the flanges and the we
    • (d) None

ANS: (a)

  1. Shear center in case of a channel section beam will lie

(a) Within the cross section

  • (b) Outside the cross section
  • (c) On the outer edge of the section
  • (d) None

ANS: (b)

  1. Shear center in case of a I- section beam will lie
    • (a) Within the cross section
    • (b) Outside the cross section
    • (c) On the outer edge of the section
    • (d) None

ANS: (a)